
A Robust Chessboard Detector for Geometric Camera Calibration

Mathis Hoffmann, Andreas Ernst, Tobias Bergen, Sebastian Hettenkofer and Jens-Uwe Garbas
Fraunhofer Institute for Integrated Circuits IIS, Am Wolfsmantel 33, 91058 Erlangen, Germany

Keywords: Chessboard Detection, Camera Calibration, Endoscope Calibration, Integral Image, Checkerboard Detection.

Abstract: We introduce an algorithm that detects chessboard patterns in images precisely and robustly for application
in camera calibration. Because of the low requirements on the calibration images, our solution is particularly
suited for endoscopic camera calibration. It successfully copes with strong lens distortions, partially occluded
patterns, image blur, and image noise. Our detector initially uses a sparse sampling method to find some con-
nected squares of the chessboard pattern in the image. A pattern-growing strategy iteratively locates adjacent
chessboard corners with a region-based corner detector. The corner detector examines entire image regions
with the help of the integral image to handle poor image quality. We show that it outperforms recent solutions
in terms of detection rates and performs at least equally well in terms of accuracy.

1 MOTIVATION

Endoscopic procedures are frequently used in the
treatment of various diseases and internal injuries.
Minimally invasive surgery with endoscopic instru-
ments is performed, for example, on abdominal or-
gans (laparoscopy), joints (arthroscopy), or the brain
(neurosurgery). Endoscopy requires good orienta-
tion, coordination, and fine motor skills of the sur-
geon. Therefore, computer systems that offer navi-
gation support to the physician are of increasing sig-
nificance. Navigation systems that relate the view
through the endoscope to the geometry of the surgi-
cal site require a calibrated camera. In this context,
calibration refers to the process of estimating the in-
trinsic camera parameters. The intrinsic parameters
of a distorted pinhole camera model consist of the fo-
cal length, the principal point, as well as radial and
tangential distortions. Usually, camera calibration is
a two-step process: First, a known calibration pattern
is detected in the images. Second, the calibration pa-
rameters are estimated based on correspondences be-
tween points on the pattern and their projections in
the images. In this paper, we focus on the first step.
We present a new method for detecting the calibration
target robustly and precisely under hard constraints.

Camera calibration for endoscopic applications
poses several challenges. Endoscopes often have
wide-angle lenses with typical viewing angles be-
tween 90° and 120°. Therefore, distortion effects are
very strong. Due to the optical setup of the endo-

scope, the light source is close to the optical cen-
ter. This often causes strong inhomogeneity, glare,
vignetting effects, and high image noise in badly il-
luminated regions. Within a clinical environment,
non-technical staff must be able to perform the cal-
ibration process quickly. Consequently, the calibra-
tion method must reliably handle motion blur, defo-
cussing, and recordings of partially captured patterns.

Various patterns have been developed. Still, the
planar chessboard pattern is most established. Mal-
lon et al. (Mallon and Whelan, 2007) have shown
that the chessboard pattern outperforms circle pat-
terns in the case of strong perspective or radial dis-
tortion. Self-identifying targets (like ARTags (Fiala
and Shu, 2005)) are more complex and require high
resolution and low-noise images. We will therefore
focus on a classical chessboard pattern. Nonetheless,
the proposed method can be adapted to other calibra-
tion targets as well.

2 RELATED WORK

A variety of calibration approaches have been pro-
posed to determine intrinsic camera parameters from
a set of images of a known calibration pattern. Sub-
stantial contributions include early works by Tsai
(Tsai, 1987), Heikkilä and Silven (Heikkila and Sil-
ven, 1997), and Zhang (Zhang, 2000). Various im-
provements and extensions of these methods have
been suggested for application in endoscopic camera
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calibration (Zhang et al., 2000; Wengert et al., 2006).
Moreover, alternative camera models have been sug-
gested, tailored to the optical setup of endoscopic
cameras (Stehle et al., 2007; Li et al., 2008). Bar-
reto et al. addressed the requirement of an easy-to-use
calibration process and developed a single-shot cal-
ibration method to allow for an endoscope calibra-
tion procedure with minimal effort for the surgeon
(Barreto et al., 2009). Rufli et al. also proposed a
method for the detection of a calibration pattern (Ru-
fli et al., 2008). Their approach is based on an adap-
tive thresholding of the input images, followed by a
binary contour finder to detect the quadrangles of a
chessboard pattern. A variation of this approach is im-
plemented in the OpenCV computer vision toolbox.
More recently, Placht et al. presented a chessboard de-
tection method (ROCHADE) for highly distorted im-
ages. They detect edges based on a gradient image
to create a graph representation of the detected chess-
board quadrangles. Graph-matching is then applied
to confirm correct detection results. Both methods re-
quire the entire calibration pattern to be visible in the
image. This is a major drawback in the context of en-
doscopy. It impedes to capture chessboard corners in
the outer image regions, where barrel distortion has
the strongest effect. So, the most valuable image re-
gions cannot contribute any point correspondences.
Fuersattel et al. improved the ROCHADE method to
also handle partially visible chessboards by including
a subgraph-matching strategy (called OCPAD). Sun
et al. proposed a chessboard detection algorithm that
locates corners robustly under inhomogeneous illumi-
nation and also handles deformed chessboards (Sun
et al., 2008). They detect corner points by evaluating
bright and dark sequences along circles around corner
point candidates.

Most of the established approaches either apply
a binarization procedure to separate dark and bright
regions or extract edges from the images to localize
chessboard corners. In contrast, we propose to eval-
uate region statistics to robustly and accurately detect
chessboard corners under difficult image conditions.
Considering entire image regions (corresponding to
chessboards quadrangles) makes the approach insen-
sitive to image noise and blurry edges. Our method is
explicitly designed to handle partially visible chess-
boards with strong distortion effects under inhomo-
geneous illumination.

3 PROPOSED METHOD

Figure 1 shows an overview of our method. The in-
dividual steps are illustrated in Figure 2. The process

sparse region
samplingselect best

create candidates

locate corners

select candidates

reestimate model
parameters

found new
corners?

done

yes

no

initial estimation

pattern growing parameter optimization

Figure 1: Overview of the proposed method. The process
is divided into an initial estimation, a pattern growing and a
parameter optimization phase.

consists of three phases. The initialization phase uses
a sparse sampling strategy to find an initial guess for
the chessboard position and size (Figures 2a and 2b).
The guess is then improved to subpixel precise corner
locations and allows an initial camera parameter esti-
mation (Figure 2c). The pattern-growing phase itera-
tively searches new chessboard corners in the vicinity
of detected corners and updates the camera parame-
ters in the optimization phase (Figures 2d to 2f). The
following sections explain the three phases in detail.

3.1 Initial Estimation

Our method requires an initial estimate of the chess-
board size, pose and position. Therefore, we regularly
scan the image with a 3×3 chessboard model to find
positions of high correspondence between the model
and the image (Figures 2a and 2b).

At each position, we sample the intensities of 5
points within each of the 9 chessboard patches (see
Figure 3). The regular structure of a chessboard al-
lows us to divide it into two groups of homogeneous
intensities. A successful initial guess is characterized
by a high intensity difference between both groups
and a low intensity variance within each group. The
Fisher linear discriminant is suited to identify the best
guess. It is commonly used to maximize the spread
of samples in pattern classification problems (Duda
et al., 2001). Let σ̂1 and σ̂2 denote the standard de-
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(a) Arbitrary sample (b) Accepted sample (c) Initially located corners

(d) One iteration (e) Two iterations (f) Convergence after 14 iterations

Figure 2: Individual steps of our method.

(2, 0)T

(0, 2)T

Figure 3: Sparse sampling model. Red points indicate sam-
pling coordinates. The grid size is 1 in x and y direction.
Note that the model consists of two groups of homogeneous
regions (black and white).

viation of all samples in the respective group. Let µ̂1
and µ̂2 denote the corresponding intensity means. We
define the correspondence between the chessboard
model and the image based on the idea of the Fisher
discriminant as

sp :=
µ̂1− µ̂2

σ̂1 + σ̂2
, (1)

where p denotes the dependency on the model pa-
rameters, i.e. size, pose, and position. We test for
different combinations of size, position, shearing and
rotation to find a proper guess. Finally, we choose
the sample that maximizes |sp| and calculate an initial
homography H0 based on correspondences between
the model and image coordinates. We do not yet ac-
count for distortion and initialize the distortion d0 to

an identity mapping. We denote the complete proce-
dure as sparse region sampling.

3.2 Pattern Growing

The initial estimate provides an approximation of H0
and d0 that is valid in a close vicinity to the initial
guess. We use the approximation to predict corner
locations of the sparse sampling model in the image.
We drop the four outer corners of the sparse sampling
model (see Figure 3), because their prediction is often
less accurate and locate the remaining 12 corners with
subpixel accuracy using the corner detector depicted
in the following sections. Figure 2c shows the result
of this step. The update of the projection parameters
yields H1 and d1. Then, we iteratively search nearby
chessboard corners until we can’t detect any new cor-
ner. Therefore, we consider the four direct neighbors
of the chessboard corners that have already been de-
tected and apply the corner detector to each of them.
We append the new corners to the set of detected cor-
ners on success and drop them otherwise. After every
iteration, we update H and d to improve the projection
parameters for the next iteration.

Let us give an example: In the first iteration, we
consider the neighbors of the 12 initial corners. As-
sume, we begin with vvvi = (0.5, 1.5)T of Figure 3. The
four direct neighbors of vvvi are given by

n(vvvi) :=
{[

xi±1
yi

]
,

[
xi

yi±1

]}
. (2)

We apply the corner detection only to the new points
(1.5, 1.5)T and (0.5, 2.5)T and add them to the set of

VISAPP 2017 - International Conference on Computer Vision Theory and Applications

36



detected corners on success. We apply this procedure
to all 12 points and subsequently update the projec-
tion parameters to get H2 and d2. The result of this
iteration is shown in Figure 2d.

The pattern-growing phase relies on the region-
based corner detector introduced in Section 3.2.3. It
makes our method robust against noise and blur. First,
we introduce a morphable model in Section 3.2.1 and
its projection into the image space in Section 3.2.2 to
explain the corner detector in detail.

3.2.1 Morphable Corner Model

The morphable model is defined by a linear combi-
nation of N deformed templates Tk with coefficients
αk and an undeformed template T0. The coefficients
determine the shape of the model. Each template con-
sists of M vertices1 and is defined by

Tk :=




xk1 yk1
...

...
xkM ykM


 , with k ∈ [0,N] . (3)

We associate one parameter αk with each deformation
target Tk for k > 0 to specify the weight of each tem-
plate in the linear combination. In addition, we intro-
duce global translation and scaling parameters ∆x, ∆y,
and s. The morph parameter vector combines all pa-
rameters in

p := (∆x, ∆y, s, α1, . . . , αN) (4)

and parametrizes the morphable model m:

m : RN+3→ RM×2

p 7→M =




x̆1 y̆1
...

...
x̆M y̆M




:= s

(
T0 +

N

∑
k=1

αk (Tk−T0)

)
+




∆x ∆y
...

...
∆x ∆y


 .

(5)

In this work, we use the elementary templates
shown in Figure 4. Some of the illustrated shearing
templates do not introduce additional deformations.
However, they enable identical deformations by di-
verse parameter combinations and simplify alignment
to the chessboard corners. Experiments confirmed a
better convergence with these additional templates.

The morphable model is influenced by the point
distribution model (pdm) proposed by Cootes and

1We denote unmorphed coordinates in model space by
(x, y) and morphed coordinates in model space by (x̆, y̆).
Further, we denote image coordinates by (u, v), their ho-
mogeneous representations by (ũ, ṽ, w̃) and distorted image
coordinates by (ŭ, v̆).

Taylor (Cootes and Taylor, 1992). The deviation of
each deformation template from the default template
is similar to the statistical modes of variation in the
pdm. However, we define the deformation templates
manually and add scaling and translation in the model
coordinate frame.

3.2.2 Projection Model

The morphable model resides in the model coordinate
frame and M is a matrix of model coordinates. We
use planar calibration targets. Therefore, the image
coordinates of the model lie in a two dimensional lin-
ear manifold of R3. A homography defines the linear
projection of each vertex (x̆, y̆) from M into the image
frame by 


ũ
ṽ
w̃


= H




x̆
y̆
1


 . (6)

The homography matrix H ∈ R3×3 is defined up to
scale (Zhang, 2000). We get the inhomogeneous
representation of the image coordinates by u = ũ/w̃
and v = ṽ/w̃, respectively. Afterwards, we apply the
Brown-Conrady model to account for non-linear ra-
dial and tangential distortion (Brown, 1971):

ŭ := u
(
1+ k1r2 + k2r4)+

(
p2
(
r2 +2u

)
+2p1uv

)
,

v̆ := v
(
1+ k1r2 + k2r4)+

(
p1
(
r2 +2v

)
+2p2uv

)
,

where the coefficients k1, k2 cause radial distortion
and p1, p2 cause tangential distortion. The radius r
is the distance of each vertex to the distortion center
(cx, cy):

r2 = (u− cx)
2 +(v− cy)

2 .

The distortion parameter vector summarizes all coef-
ficients in d := (cx, cy, k1, k2, p1, p2). We combine
the linear and non-linear transform in

m′ : RN+3×R3×3×R6→ RM×2

(p, H, d) 7→M′ =




ŭ1 v̆1
...

...
ŭM v̆M


 . (7)

The number of coefficients used for distortion
modeling influences the accuracy of the model. Tsai
shows that a radial distortion model with one coeffi-
cient is sufficient for industrial machine vision appli-
cations (Tsai, 1987). Barreto et al. show that more
than a single radial distortion coefficient can be ad-
vantageous for endoscopy applications (Barreto et al.,
2009). We focus on endoscopy images with strong
distortion effects. Therefore, we use two radial and
two tangential coefficients, similar to others (Zhang,
2000; Wei and Ma, 1994).
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T0 T1 T2 T3 T4 T5 T6

Figure 4: Different morph templates. T0: unmorphed template; T1 and T2: shearing at the model center; T3 - T6: shearing
by moving only the top, bottom, left and right side.

Figure 5: Subpixel precise corner detection using a 2× 2
corner model. The corner model is shown before (left) and
after (right) optimization.

3.2.3 Region-based Corner Detection

Our morphable corner detection model M′ consists
of four distinct regions that form a 2× 2 chessboard
pattern (see Figure 5). The outline of each region is
given by a sequence of vertices (ŭi, v̆i), i∈ [kr, lr] with
lr > kr + 2 and kr+1 := lr + 1 for all r ∈ [1,4]. Here,
r denotes the region index and kr, lr ∈ [1,M] are the
boundaries of region r. We apply the 2× 2 corner
model to the domain of corner detection. Therefore,
we need a criterion that measures how well the model
separates the four chessboard regions in the image. In
Section 3.1, we applied a variant of the Fisher dis-
criminant to find the sample that separates the groups
of black and white chessboard patches best. Based on
the same idea, we derive a local measure that provides
better guidance to the optimizer for subpixel precise
corner detection. We use the Levenberg-Marquardt
method to minimize the model residual. Therefore,
we split the Fisher discriminant into two indepen-
dent terms, where each term accounts for the variance
within one region and the separation of that region
from one of its neighbors. In contrast to the original
formulation, we use signed values to provide better
guidance to the optimizer. Finally, we turn the maxi-
mization into a minimization problem.

Let µr and σr be the pixel value mean and the stan-
dard deviation of all pixels in region r. We define the
separation between two regions ra and rb by

σra +σrb

µra −µrb

=
σra

µra −µrb

+
σrb

µra −µrb

.

We assume that the four regions are indexed in clock-
wise order, such that

(ra, rb) ∈ {(1, 2), (2, 3), (3, 4), (4, 1),
(2, 1), (3, 2), (4, 3), (1, 4)}

denote pairs of neighboring regions. Then, we get the
separation of some region ra to one of its neighbors rb
by

ê : [1,4]× [1,4]→ R

(ra, rb) 7→ erarb :=
σra

µra −µrb

.
(8)

Finally, we define the separation objective for M′ by

e := (e12, e21, e23, e32, e34, e43, e41, e14)
T. (9)

For now, let us assume that we roughly know the
parameters H and d for the projection of M into the
image space. Therefore, we can predict the approx-
imate locations of the model coordinates (∆x, ∆y) in
the image. In the first iteration, H and d are initialized
as described in Section 3.1. In subsequent iterations,
these estimates are updated by taking newly detected
corners into consideration. We describe the update
procedure in Section 3.3.

We search for the exact image location vvv∗ =
(ŭ∗0, v̆

∗
0) of the chessboard corner. This is done by min-

imizing e with respect to the morph template parame-
ters while keeping H and d constant. Therefore

p∗ = argmin
p
‖e‖2, (10)

where p is initialized with (∆x, ∆y, s, 0, . . .). We allow
the model to be translated and sheared with six differ-
ent shearing templates. This simplifies minimization
because it lowers the risk that the error only decreases
when several parameters are adjusted simultaneously.
The solution, vvv∗ is then given by the center vertex of
m′ (p∗,H,d) (see Figure 5).

Note that the scale parameter s of the model con-
trols the size of the 2× 2 search template relative to
the chessboard size. We use s = 0.5, that is, each
patch of the search template covers approximately a
quarter of the area of the chessboard patch. If the cor-
ner detector fails with this configuration (possibly be-
cause the point is located close to the image border),
we reduce s and try it again.

Applying the morph parameters in the model co-
ordinate frame makes them scale independent. For
example, adding 1 to ∆x always moves the template
by the width of one chessboard patch in the image
frame, independent of the image resolution and patch
size in the image. This allows fixed delta values to
compute the numerical derivative of Equation (9).
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Figure 6: Examples of candidates that have been dropped
due to a degenerate result (left) or a high residual (right).

3.2.4 Candidate Selection

In some cases, the corner detector provides invalid lo-
cations in the image as shown in Figure 6. There-
fore, we introduce constraints that allow us to reject
invalid results. First, the detected corner must be in
the vicinity of the corner that is predicted by the cur-
rent model state. This ensures that the optimization
did not converge to a neighboring point. In practice,
it is sufficient to allow a deviation of one half of the
chessboard patch width. This can be easily verified
with the translation parameters (∆x, ∆y) of m. They
must not differ more than 0.5 from their initialization.
Second, the area of the corner detection model be-
fore the optimization must not differ too much from
the area after optimization. This constraint prohibits
degenerate configurations. Finally, the residual error
‖e‖2 must meet the detection threshold. This rejects
chessboard corners on the border or outside of the pat-
tern.

3.2.5 Region Statistics

The calculation of µr and σr is done multiple times in
every iteration of the optimization. Therefore, it re-
quires a very fast algorithm. Ernst et al. have extended
the integral image approach of Viola and Jones (Vi-
ola and Jones, 2001) to approximate statistics within
polygonal image regions very efficiently (Ernst et al.,
2013). We summarize the method in the following.
The integral image IΣ of an image I is given by

IΣ (x,y) := ∑
i6x, j6y

I(i, j) . (11)

The sum of pixel values sr within some polygonal re-
gion r in an image of size w×h is approximated by

ŝ : RM×2×Rw×h→ R
(
M′, IΣ

)
7→ sr :=

1
2

lr

∑
i=kr

[ IΣ (ŭi, v̆i+1)

−IΣ (ŭi+1, v̆i) ] ,

(12)

with lr + 1 := kr. Similary, â provides the area ar in-
side r:

â : RM×2→ R

M′ 7→ ar :=
1
2

lr

∑
i=kr

(ŭiv̆i+1− ŭi+1v̆i) .
(13)

Equations (12) and (13) allow the approximation of
the mean pixel value µr within r by

µ̂ : RM×2×Rw×h→ R
(
M′, IΣ

)
7→ µr :=

sr

ar
.

(14)

Approximating the standard deviation σr within r
requires a second integral image

[
I2
]

Σ, where each
pixel value is squared before the summation:

σ̂ : RM×2×Rw×h×Rw×h→ R

(
M′, IΣ,

[
I2]

Σ
)
7→ σr :=

√
ŝ(M′, [I2]Σ)

ar
−µ2

r . (15)

The efficient approximation of µr and σr allows a
fast implementation of the robust local corner detec-
tor depicted in Section 3.2.3. Subpixel precision is
achieved by bilinear sampling. We refer to the pre-
vious work for a detailed explanation of the method
(Ernst et al., 2013).

3.3 Parameter Optimization

The corner detector finds the image location of a
chessboard corner vvv∗ that corresponds to a corner co-
ordinate vvv = (∆x, ∆y) in model space. With that rela-
tion, we define two sets

Mt := {vvv1, vvv2, . . . , vvvNt}
and

It :=
{

vvv∗1, vvv∗2, . . . , vvv∗Nt

}
.

Here, vvvi denotes the model coordinate corresponding
to vvv∗i and t ∈ N denotes the iteration number of the
pattern-growing step.

We apply Equation (7) with (Ht , dt) on every
vvvi ∈Mt to predict the image locations vvv′i with the cur-
rent projection model. The parameter optimization
step aims at improving the projection model by mini-
mizing the errors between the detected corners vvv∗i and
the predicted corners vvv′i. Therefore, we find the model
parameters for the next iteration by

(Ht+1, dt+1) = argmin
(Ht ,dt )

∥∥∥∥∥∥∥




vvv′1−vvv∗1
...

vvv′Nt
−vvv∗Nt




∥∥∥∥∥∥∥
2

. (16)
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(a) Original OCPAD dataset (b) With b = 8 (c) With n = 16

(d) Wolf laparoscope (e) Wolf cystoscope (f) Olympus rhinolaryngoscope

Figure 7: Example images of the datasets.

Algorithm 1: Chessdetect.

1: M0←{vvv1, vvv2, . . . , vvv12}
2: t← 0
3: Initialize H0 and d0 as described in Section 3.1
4: repeat
5: It ←{}
6: for all vvv ∈Mt do
7: Find p∗ using (10)
8: vvv∗← center vertex of M∗c
9: if constraints are met then

10: It ← It ∪vvv∗

11: else
12: Mt ←Mt \vvv
13: end if
14: end for
15: Find Ht+1 and dt+1 using (16)
16: Mt+1←Mt ∪{n(vvv) |vvv ∈Mt}
17: t← t +1
18: until |It−1|= |It−2|

3.4 Summary

We have introduced all relevant parts of our method
and summarize the procedure in Algorithm 1. To sim-
plify notation, we skip the algorithm for the initial
guess. Figure 3 shows our sparse sampling model and
Figure 2c shows an example of the initial corners.

Line 1 initializes M0 with the corners of the sparse
sampling model. Line 3 initializes H0 with the result
of the initial guess and sets d0 to an identity map-
ping (see Section 3.1). The first iteration locates the
corners M0 of the sparse sampling model with sub-
pixel precision. The subsequent iterations search for

chessboard corners in the vicinity of already detected
corners (see Figures 2d to 2f). The algorithm iterates
until no new corners are detected.

Line 7 applies the region-based corner detector.
Subsequently, line 8 extracts the center vertex of the
corner model. Line 9 checks the constraints of Sec-
tion 3.2.4. On success, the point is accepted in line 10.
After all candidates in M have been detected or
dropped, the model parameters are estimated with the
updated correspondences in line 15. Finally, line 16
generates new candidates for the next iteration.

In practice, it is sufficient to locate only the cor-
ners vvvi ∈M that are new in the current iteration. In
this case, it is recommended to locate all corners again
after the algorithm terminated, using the projection
parameters of the last iteration. Sometimes, the cor-
ner detector locates new corners in later iterations that
have been dropped before. This is caused by more
accurate projection parameters in later iterations that
lead to a better initialization of the corner model in
terms of translation and deformation.

4 EXPERIMENTS AND RESULTS

We evaluate our method with respect to image blur,
image noise, and only partially visible patterns. In
addition, we compare the performance with the Oc-
cluded Checkerboard Pattern Detector (OCPAD) by
Fuersattel et al. (Fuersattel et al., 2016). To the best
of our knowledge, this is the most recent approach
that can also cope with partially visible patterns.
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Table 1: Quantitative detection results.

set total images detected images average points per image

Our method OCPAD Our method OCPAD
Endoscope set 1 99 90 71 204.3 99.9
Endoscope set 2 97 88 47 171.3 108.8
Endoscope set 3 100 79 38 128.0 64.7
OCPAD original 64 64 63 53.9 53.7
blur = 2 64 64 64 54.0 54.0
blur = 4 64 64 61 53.3 53.6
blur = 8 64 13 0 39.1 0.0
noise = 4 64 64 58 53.9 53.3
noise = 8 64 64 30 53.9 51.4
noise = 16 64 59 0 51.8 0.0

Figure 8: An image from endoscope set 1 that was discarded
manually, because OCPAD delivers false correspondences.

4.1 Datasets

Fuersattel et al. created datasets that consist of fully
visible as well as occluded chessboard patterns and
made them publicly available. In a first step, we cre-
ated variants of their fully visible checkerboard pat-
terns dataset by artificially adding blur and noise to
show how our method performs under these circum-
stances in a reproducible environment. We applied
mogrify2 on the dataset and used the following pa-
rameters:

• mogrify -blur 0xb
blurs an image. Here, b denotes the standard devi-
ation of the blur kernel. We use blur kernels with
a standard deviation of 2, 4 and 8.

• mogrify -attenuate n +noise gaussian
adds noise to an image. Here, n is the noise inten-
sity. We use noise intensities of 4, 8 and 16.

To reduce evaluation times, we only use the first
64 images of the dataset. Otherwise, the OpenCV
calibrateCamera function used for the evaluation

2http://www.imagemagick.org/script/mogrify.php

procedure in Section 4.2 takes very long. Examples
of the datasets are shown in Figures 7a to 7c.

The good image quality of the OCPAD datasets
and the low requirements on the chessboard detector
impede differentiation of both methods on the original
data. Although we raised the requirements by adding
noise and blur, we know that the results on the arti-
ficially downgraded data do not necessarily general-
ize on real data. Therefore, we additionally compiled
datasets that put high requirements on the chessboard
detector using three different endoscopes:

• Set 1 was captured with a Panoview rigid laparo-
scope from Richard Wolf GmbH with 30◦ side
view and a diameter of 10 millimeters.

• Set 2 was captured using a 0◦, 4 millimeter
Panoview rigid cystoscope from Richard Wolf
GmbH.

• Set 3 was captured with a 3.9 millimeter video rhi-
nolaryngoscope (Olympus ENF-VH). In contrast
to the previous endoscopes, it has a flexible tube,
where the image sensor is located at the distal end
of the tube (chip-on-tip).

Figures 7d to 7f show example images of the datasets.
Each endoscopy dataset consists of 100 images.

4.2 Procedure

We processed every image in the datasets with both
chessboard detectors. Unfortunately, the OCPAD im-
plementation3 requires to define the chessboard size
in advance. It uses this knowledge to reject images,
where only a small portion of the chessboard was de-
tected. We do not have this prior knowledge for the
endoscopy datasets, because the portion of the chess-
board that is visible varies a lot within the sequences.
Therefore, we choose the following strategy: First,

3http://www.metrilus.de/blog/portfolio-items/ocpad/
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Figure 9: Average reprojection error µ of all images in the test sets. The camera parameters have been estimated with n
images. The plots show the results of our region-based detector (red) and the OCPAD detector (black). In case of the datasets
with artificial blur and noise, the solid lines correspond to the original data without blur or noise, whereas the dashed lines
correspond to the sets with b = 2 or n = 4 and the dotted lines correspond to b = 4 or n = 8. Unfortunately, we have no
results for b = 8 and n = 16, because OCPAD failed completely on these sets. Note, that the n-axis has a logarithmic scale
and that the scale of the µ-axis varies between the endoscope and the OCPAD sets.

we apply OCPAD and set the chessboard size to 4×4.
If it succeeds, we increase the chessboard size by 1 in
both dimensions and apply it again. We repeat this
until OCPAD fails and keep the last valid result.

In rare cases, OCPAD fails with an exception or
generates results that are obviously wrong (see Fig-
ure 8 for an example). In those cases, we simply re-
move the image from our datasets, such that it is com-
pletely ignored during the evaluation.

Based on the remaining results, we evaluate the
detection rates and the number of point correspon-
dences that have been found within each set. We only
consider images, where the corresponding method
has found at least 10 point correspondences. The de-
tection rate is defined as the number of images (with
at least 10 detected point correspondences) in rela-
tion to the total number of images. We also evaluate
the average number of points that have been found in
each image. Finally, we evaluate the calibration ac-
curacy of both methods. To this end, we extract the
set of points that have been detected by both methods
and use them to estimate the camera parameters with
the OpenCV library. The function calibrateCamera
returns the final average reprojection error. The repro-

jection error does not only depend on the calibration
and corner detection accuracy, but also on the quality
of the camera model. However, the error imposed by
the camera model exists in both methods.

4.3 Results

Table 1 summarizes the detection results of both
methods. On the endoscope datasets, our method pro-
vides significantly higher detection rates and detects
roughly twice as much point correspondences per im-
age. On the artificially blurred images, both methods
perform approximately equally well until the standard
deviation reaches 8 pixels. In this case, the detection
rates of both methods drop. On the noisy images, the
detection rates of our method are approximately con-
stant, whereas the detection rates of OCPAD decrease
constantly.

Figure 9 shows the mean reprojection error for an
increasing number of images on all datasets. We dis-
cuss the peculiarities of the results in more detail. En-
doscope set 1 shows a high decrease of the reprojec-
tion error between 2 and 3 images with both methods.
An insufficient number or inappropriate configuration
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of correspondences in image 1 and 2 could explain
this effect with a poor calibration. Note, that we used
only the subset of correspondences that was detected
by both methods for a fair evaluation of the reprojec-
tion error. The sudden increase of the error in endo-
scope set 3 around image 28 is probably caused by the
image sequence, because the images that are added at
that point are taken from a very different perspective.

Overall, our method provides significantly better
detection rates on difficult endoscopy images as well
as in presence of artificial noise and performs equally
well in terms of accuracy on all datasets. Note, that
the accuracy of our corner detector depends on the
quality of the camera model. A more precise distor-
tion model can lead to a more realistic deformation of
the template in the image and a better alignment to the
corner.

5 CONCLUSIONS

We introduced a new method that detects chess-
board corners robustly and accurately even in pres-
ence of noise, blur and strong radial distortion. We
showed that the region-based corner detector com-
bined with the pattern-growing strategy detects signif-
icantly more chessboard corners then another recent
approach in difficult images and performs equally
well in terms of accuracy. Our method is well suited
when the calibration pattern is only partially visible
or when the image quality is low. Therefore, it is
particularly qualified for endoscope calibration. The
method can be implemented efficiently using an ex-
tended variant of the integral image to calculate re-
gion means and variances. Due to its efficiency and
accuracy, it is well suited for clinical environments,
although it is not limited to that application.
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